

CHAPTER 1

Package Document and Metadata

Bill Kasdorf
Vice President, Apex CoVantage

One of the most common misconceptions about EPUB is that it is a “flavor” of XML.
(“Should I use EPUB or DocBook?” or, even worse, “Should I use EPUB or HTML5?”
Hint: EPUB (pretty much) = HTML5.) Due partly to the convenient single-file format
provided as .epub, people sometimes fail to realize that EPUB is not just, and not mainly,
a specification for the markup of content documents. It is a publication format, and as
such it specifies and documents a host of things that publications need to include—
content documents, style sheets, images, media, scripts, fonts, and more, as discussed
in detail in the other chapters of this book. In fact, EPUB is sometimes thought of as “a
website in a box,” though it is actually much more than that.

What is arguably the most important thing about it is this: it organizes all the stuff in
the box. It’s designed to enable reading systems to easily and reliably know, up front,
what’s contained in a given publication, where to find each thing, what to do with it,
how the parts relate to each other. And it enables publishers to provide that information
in one clear, consistent form that all reading systems should understand, rather than in
different, proprietary ways for each recipient system.

This, of course, is what metadata is for: it’s not the content, it’s information about the
content. EPUB 3 accommodates much richer metadata than EPUB 2 did, and it enables
that metadata to be associated not just with the publication as a whole, but also with
individual components of the publication and even with elements within the content
documents themselves. While it doesn’t require much more than EPUB 2 did (in the
interest of backward compatibility), it accommodates the much richer metadata that
makes publications so much more discoverable and dynamic, so much more usable and
useful.

1

The place where all this information is organized is the package document, an XML file
that is one of the fundamental components of an EPUB, the .opf file. (The exten‐
sion .opf stands for Open Package Format, which was the precursor to the new Publi‐
cations specification.) In addition to containing most of the EPUB’s metadata, the
package document serves as a hub that associates that metadata with the other resources
comprising the EPUB. All of this is then literally “zipped up” in a single-file container,
the .epub file. Voilá, the “website in a box”—but one with a complete packing list and
indispensable assembly instructions that ensure that an EPUB 3–compliant reading
system will deliver the publication properly to the end user.

Before we take the lid off the box, let’s look at the basic building blocks of EPUB 3
metadata.

Vocabularies
In order to make EPUBs easy to create, very little metadata is actually required, and the
requirements are almost identical to those in EPUB 2. Like EPUB 2, EPUB 3 uses the
Dublin Core Metadata Element Set (DCMES) for much of its required and optional
metadata. Commonly referred to as “Dublin Core,” DCMES is widely used as a basic
framework for metadata of all sorts, from publication metadata to metadata for media
like movies, audio, and images. You’ll see examples throughout the balance of this
chapter.

But EPUBs need to handle richer metadata as well, both to provide important infor‐
mation to the reading system and the end user, and to enable the more sophisticated
functionality EPUB 3 offers. This simplicity-plus-complexity dilemma is addressed by
providing:

• A basic default vocabulary that all EPUB 3 reading systems are required to
understand;

• A short list of reserved vocabularies that can be used with their standard prefixes
without declaration; and

• A mechanism by which any other vocabulary and its prefix can be declared, along
with a pointer to where the authoritative definition of that vocabulary (in either
human-readable or machine-readable form) can be found.

It’s important to realize that this is not just designed to make it easy to create EPUBs;
equally important is that it is designed to make it easy for reading systems to process
EPUBs. While EPUB 3 enables full-blown metadata records like ONIX files for distri‐
bution and MARC records for cataloguing to be provided, such records are rich, com‐
plex, and can be used quite differently by different publishers.

ONIX is a good example of that: it provides for literally hundreds of different features
and codes by which book supply chain metadata can be described; no publisher uses all

2 | Chapter 1: Package Document and Metadata

of it, and different publishers make different choices as to what to use. This is very useful
to the publisher who needs to convey that metadata to a recipient who knows how to
handle it, but it is too much to ask all EPUB 3 reading systems to be able to handle. Plus,
that standard changes frequently as more terms and features are added. And EPUB 3 is
not just for books; many publishers who create EPUBs don’t use ONIX at all.

EPUB 3 metadata, by contrast, is designed to provide a clear, consistent foundation,
describing metadata that all EPUB 3 reading systems can be expected to handle, for all
types of content, and clearly specifying which things are optional. So while you can
include an ONIX file or MARC record if you want to, for the EPUB 3 metadata itself,
you need to follow EPUB 3’s rules. That’s what this chapter is all about.

The Default Vocabulary
The basic vocabulary on which EPUB 3 metadata depends is simple but powerful. It
provides specific, clearly defined terms that are used to describe fundamental properties
of key elements:
meta

The workhorse of EPUB 3 metadata

link

Enabling the inclusion of external resources

item

Providing metadata about each item in the manifest

itemref

For metadata associated with items in the spine

These default vocabulary terms are specific to each of those elements and provide read‐
ing systems with a reliable, consistent way to understand how to handle each of them.
For example, some of the default vocabulary terms for item in the manifest provide a
means to alert the reading system to which files include MathML or SVG, and to identify
which file is the cover image. One of the default vocabulary terms for link identifies
that the resource being linked to is an ONIX record. The default vocabulary terms for
each of these components are discussed in more detail below.

The Reserved Vocabularies
The reserved vocabularies provide commonly used sets of terms that can be used, with
the proper prefix, without requiring those prefixes to be declared in the EPUB. In other
words, the reading system is supposed to know where to find authoritative documen‐
tation of these vocabularies.

The four vocabularies reserved in EPUB 3.0 are:

Vocabularies | 3

dcterms

A richer but more restrictive counterpart to DCMES in Dublin Core, designed to
enable “linked data”

marc

A vocabulary commonly used by libraries for bibliographic metadata

media

The vocabulary on which EPUB 3’s Media Overlays specification depends

onix

The vocabulary used for book supply chain metadata

The prefix xsd is also reserved for defining W3C XML Schema data
types.

Using Other Vocabularies
Of course, there are many more vocabularies that are useful to publishers, and new ones
are being created all the time. Ideally, these are public standards for which authoritative
documentation can be referenced. But in order to be as flexible as possible, EPUB 3 even
permits proprietary vocabularies to be used.

To use any of these other vocabularies, their terms must include a prefix (similar to how
namespaces work), and each such prefix used in an EPUB must be declared in the prefix
attribute of the package element, which is the root container of the package document
(more on that below). This is done by “mapping” each prefix to a URI (Uniform Resource
Identifier) that tells where its vocabulary is documented. Examples commonly used by
publishers include:
xmp

The Extensible Metadata Platform, widely used for metadata about images and
other media:

prefix="xmp: http://ns.adobe.com/xap/1.0/"

prism

The very rich vocabulary used for magazine and other publication metadata:

prefix="prism: http://prismstandard.org/namespaces/basic/3.0/"

custom
A proprietary metadata scheme used by a publisher:

prefix="TimeInc: http://www.timeinc.com/PRISM/2.1/"

4 | Chapter 1: Package Document and Metadata

And what about EPUB 3’s default vocabulary? That is both the simplest and, potentially,
the most complicated of all.

The All-Powerful meta Element
The workhorse of EPUB 3 metadata is the meta element, which provides a simple,
generic, and yet surprisingly flexible and powerful mechanism for associating metadata
of virtually unlimited richness with the EPUB package and its contents. An EPUB can
have any number of meta elements. They’re contained in the metadata element, the first
child of the package element, and from that central location they serve as a hub for
metadata about the EPUB, its resources, its content documents, and even locations
within the content documents.

Here’s how it works.

The meta element uses the refines attribute to specify what it applies to, using an ID
in the form of a relative IRI. So, for example, a meta element can tell you something
about chapter 5:

<meta refines="#[ID of chapter 5]">...</meta>

or about the author’s name:

<meta refines="#creator">...</meta>

or about a video:

<meta refines="#video3">...</meta>

When the refines attribute is not provided, it is assumed that the meta element applies
to the package as a whole; this is referred to as a primary expression. When the meta
element does have a refines attribute, it is called a subexpression.

Each meta has a property attribute that defines what kind of statement is being made
in the text of the meta element. The values of property can be the default vocabulary,
a term from one of the reserved vocabularies, or a term from one of the vocabularies
defined via the prefix mechanism. For example, you can provide the author Haruki
Murakami’s name in Japanese like this:

<meta refines="#creator"
property="alternate-script"
xml:lang="ja">
 村上 春樹
</meta>

The default vocabulary for meta consists of the following property values:

Vocabularies | 5

alternate-script

Typically used to provide versions of titles and the names of authors or contributors
in a language and script identified by the xml:lang attribute, as shown in the pre‐
vious example.

display-seq

Used to specify the sequence in which multiple versions of the same thing—for
example, multiple forms of the title—should be displayed:

<meta refines="#title2" property="display-seq">1</meta>

file-as

Provides an alternate version—again, typically of a title or the name of an author
or other contributor—in a form that will alphabetize properly, e.g., last-name-first
for an author’s name or putting “The” at the end of a title that begins with it:

<meta refines="#creator" property="file-as">Murakami, Haruki</meta>

group-position

Specifies the position of the referenced item in relation to others that it is grouped
with. This is useful, for example, so that all the titles in a series are displayed in
proper order in a reader’s bookshelf:

<meta refines="#title3" property="group-position">2</meta>

identifier-type

Provides a way to distinguish between different types of identifiers (e.g., ISBN versus
DOI). Its values can be drawn from an authority like the ONIX Code List 5, which
is specified with the scheme attribute:

<meta refines="#src-id"
property="identifier-type"
scheme="onix:codelist5">
 15
</meta>

meta-auth

Documents the “metadata authority” responsible for a given instance of metadata:

<meta refines="isbn-id" property="meta-auth">isbn-international.org</meta>

role

Most often used to specify the exact role performed by a contributor—for example,
a translator or illustrator:

<meta refines="#creator" property="role" scheme="marc:relators">ill</meta>

title-type

Distinguishes six specific forms of titles (see “Types of Titles” (page 14)):

<meta refines="#title" property="title-type">subtitle</meta>

A meta element may also have an ID of its own, as the value of the id attribute:

6 | Chapter 1: Package Document and Metadata

<meta refines="isbn-id"
property="meta-auth"
id="meta-auth">
 isbn-international.org
</meta>

This ID can be used to make metadata chains, where one meta refines another. The
element may also have a formal identifier of the scheme used for the value of the property
(using the scheme attribute).

You can also use property values, which must include the proper prefix, from any of the
reserved vocabularies or any vocabulary for which you’ve declared the prefix:

<meta property="dcterms:dateCopyrighted">2012</meta>

You’ll notice that the previous example did not include a refines attribute. This was
intentional, as the other use for the meta element is to define metadata for the publication
as a whole. We’ll look at the Dublin Core elements for publication metadata shortly, but
you are not limited to using them. If another vocabulary provides richer metadata, you
can use the meta element to express it.

You will see examples of the meta element throughout this chapter. While it is a bit
abstract and thus can be hard to grasp at first, once you get the hang of it you’ll find it
to be easy to use, and indispensable, for enriching and empowering your EPUB with
metadata.

Publication Metadata
Most of the metadata in a typical EPUB is associated with the publication as a whole.
(An exception is an EPUB of an issue of a magazine, where most of the metadata is at
the article, or content document, level; see “Types of Titles” (page 14).) This is intended
to tell a reading system, when it opens up the EPUB, everything it needs to know about
what’s inside. Which EPUB is this (identifiers)? What names is it known by (titles)? Does
it use any vocabularies I don’t necessarily understand (prefixes)? What language does it
use? What are all the things in the box (manifest)? Which one is the cover image, and
do any of them contain MathML or SVG or scripting (spine itemref properties)? In what
order should I present the content (spine), and how can a user navigate this EPUB (the
nav document)? Are there resources I need to link to (link)? Are there any media objects
I’m not designed by default to handle (bindings)?

Having all of this information up-front in the EPUB makes things much easier for a
reading system, rather than requiring it to simply discover that unrecognized vocabu‐
lary, or that MathML buried deep in a content document, only when it comes across it,
as a browser does with a normal website.

We’ll take a look at each of these, followed by a deeper dive into some of the more
interesting ones.

Publication Metadata | 7

The Package Document Structure
An EPUB provides almost all of this fundamental information in an XML file called the
package document. This contains that invaluable packing list and those indispensable
assembly instructions that enable a reading system to know what it has and what to do
with it.

The root element of the package document is the package element. This, in turn, con‐
tains the metadata and resource information in its child elements, in this order:

• metadata (required)
• manifest (required)
• spine (required)
• guide (optional and deprecated; a carryover from EPUB 2)
• bindings (optional)

The following markup shows the typical structure you’ll find:

<package ... version="3.0" xmlns="http://www.idpf.org/2007/opf">
 <metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 ...
 </metadata>
 <manifest>
 ...
 </manifest>
 <spine>
 ...
 </spine>
</package>

In addition to declaring the namespace on the root package element, you must also
declare the version (EPUB 3s must declare 3.0). The following attributes are also
recommended:
xml:lang

The language of the package document (not necessarily the same as the
publication!)

dir

The text directionality of the package document: left-to-right (ltr) or right-to-left
(rtl)

8 | Chapter 1: Package Document and Metadata

The metadata Element
The metadata element contains the same three required elements as it did in EPUB 2,
one new required element, and a number of optional elements, including that all-
powerful meta element described previously.

As mentioned earlier, EPUB continues to use the Dublin Core Metadata Element Set
(DCMES) for most of its required and optional metadata.

XML rules require that you declare the Dublin Core namespace in order to use the
elements. This declaration is typically added to the metadata element, but can also be
added to the root package element. For example:

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">

The required elements, which can occur in any order, are the following:
dc:identifier

Contains an identifier for the publication. An EPUB can have any number of these
(for example, an ISBN, a DOI, and even a proprietary identifier), but it must have
at least one. And one must be designated as the unique identifier for the publication
by the unique-identifier attribute on the root package element. (In a departure
from EPUB 2, this is not, however, a unique package identifier; see “Identifiers”
(page 11) for more on this.) A dc:identifier in metadata may or may not have an
id attribute; the id is only required for the one designated as the publication’s unique
identifier.

dc:title

Contains a title for the publication. Like dc:identifier, there can be more than
one of these, but there must be at least one. While an id is not required on
dc:title, it is a good idea to provide one, in order to associate metadata with it;
you’ll see why this is useful in “Types of Titles” (page 14). In addition, the optional
xml:lang attribute enables the language of a title to be specified, and the optional
dir attribute specifies its reading direction, with values of ltr (left-to-right) and
rtl (right-to-left).

dc:language

Specifies the language of the publication’s content. (You can specify the language of
many metadata elements with the xml:lang attribute; this dc:language element
on metadata is about the content of the EPUB.) There can be more than one—for
example, an EPUB might mainly be in English but have sections in French—but
there must be at least one. And languages must be specified with the scheme pro‐
vided in RFC5646, “Tags for Identifying Languages”; you can’t just say “French.”

Here is how you would express the required metadata for this book:

Publication Metadata | 9

<dc:identifier id="pub-identifier">urn:isbn:9781449325299</dc:identifier>
<dc:title id="pub-title">EPUB 3 Best Practices</dc:title>
<dc:language id="pub-language">en</dc:language>

All of the other elements in the Dublin Core Metadata Elements Set (DCMES) are
optional, but many of them are quite useful. These are dc:contributor, dc:coverage,
dc:creator, dc:date, dc:description, dc:format, dc:publisher, dc:relation,
dc:rights, dc:source, dc:subject, and dc:type. You’ll see these in many of the ex‐
amples in this chapter. They may all have optional id, xml:lang, and dir attributes. The
ones most publishers will be likely to use are these:
dc:creator

Contains the name of a person or organization with primary responsibility for cre‐
ating the content, such as an author; dc:contributor is used in the same way, but
indicates a secondary level of involvement (for example, a translator or an illustra‐
tor). The EPUB default vocabulary for properties can be used to provide further
information, using that workhorse meta mechanism described above. For example,
property="role" can be used to specify that a contributor was the translator, and
property="file-as" can be used to provide her name in last-name-first form so
it will sort properly alphabetically:

<dc:creator id="author">Bill Kasdorf</dc:creator>
<meta refines="#author" property="role" scheme="marc:relators">aut</meta>

dc:date

Used to provide the date of the EPUB publication, not the publication date of a source
publication, such as the print book from which the EPUB has been derived. Only
one dc:date is allowed. Its content should be provided in the standard W3C date
and time format, for example:

<dc:date>2000-01-01T00:00:00Z</dc:date>

dc:source

Contains the identifier of the source publication from which the EPUB was derived,
such as the print version. Only one dc:source is allowed:

<dc:source id="src-id">urn:isbn:9780375704024</dc:source>

dc:type

Presents a bit of a curveball at the moment, because the IDPF has not yet defined
values for it. It is intended to distinguish specialized types of EPUBs like dictionaries
or indexes. Since it’s optional, it may be best not to use it until there is a standard
set of values available.

The metadata element can also contain any number of those useful meta elements de‐
scribed in “The All-Powerful meta Element” (page 5). An EPUB with rich metadata is
likely to include lots of them, each one with its refines attribute identifying what its
property attribute applies to, its optional id enabling itself to subsequently be refined

10 | Chapter 1: Package Document and Metadata

by another meta, and its optional scheme documenting a formal definition of the prop‐
erty it describes. This is deliberately generic and abstract: in order to enable you to use
virtually any kind of metadata in an EPUB, it specifies nothing but this bare-bones
mechanism. Users often look in vain for more specifics at first; it is only after you begin
to use meta that you come to realize its flexibility and power.

There is one very specific use of the meta element that is quite important; in fact, it is a
requirement for EPUB 3. The meta element is used to provide a timestamp that records
the modification date on which the EPUB was created. It uses the dcterms:modified
property and requires a value conforming to the W3C dateTime form, like this:

<meta property="dcterms:modified">2011-01-01T12:00:00Z</meta>

When used with the unique identifier that identifies the publication, this further iden‐
tifies the package.

More on this later in “Identifiers” (page 11).

Mention should be made here of the meta element as defined in the previous EPUB
specification, OPF2. That OPF2 version of meta has been replaced by the new definition
in EPUB 3. However, despite the fact that it is obsolete, it is still permitted in an EPUB
so that EPUB 3 reading systems don’t reject older EPUB 2s—but they’re required to
ignore those obsolete OPF2-style metas. We’ll see a use for this element when we look
at covers in “Covers” (page 85) in Chapter 3.

Finally, the metadata element can also include link elements. These are designed to
associate resources with the publication that are not a part of its direct rendering. Unlike
most publication resources, linked resources can be provided either within the container
or outside it. The element is primarily designed to enable metadata records of different
types to be included in an EPUB.

The link element, along with the bindings element that is a sibling,
rather than a child, of metadata, is discussed in more detail later in
“Links and Bindings” (page 20).

Identifiers
Andy Tanenbaum’s joke about standards, “The nice thing about standards is that there
are so many of them to choose from,” applies just as well to identifiers. The ironic im‐
plication of the joke (shouldn’t one standard, one identifier, be sufficient?) turns out to

Identifiers | 11

be far from the truth. Identifiers have different purposes: the ISBN is a product identifier,
the ISTC identifies textual works, the DOI provides an “actionable” and persistent iden‐
tifier, the ISSN identifies a serial publication; and publishers typically have proprietary
identifiers for their publications as well. Many of these can apply to a given EPUB.

Providing these identifiers—and, ideally, documenting them properly—uses a combi‐
nation of the Dublin Core dc:identifier and EPUB 3’s meta element. Here’s an example
from the EPUB 3 specs:

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:identifier id="pub-id">
 urn:doi:10.1016/j.iheduc.2008.03.001
 </dc:identifier>
 <meta refines="#pub-id"
 property="identifier-type"
 scheme="onix:codelist5">
 06
 </meta>
 ...
</metadata>

Since we can have any number of these, we need to give this one an ID; we’ve named it
pub-id. Then the content of dc:identifier is the identifier itself, which in this case is
a digital object identifier (DOI).

While it might seem obvious that that identifier is a DOI (it does begin with doi:, after
all), that is not true of every possible identifier we might want to use. In the interest of
making things as clear and explicit as possible (for either human or machine interpre‐
tation), we need to identify what kind of identifier that is and where its authoritative
definition can be found. That’s what the meta element is doing. It says, “I’m refining the
element I designated as pub-id; what I’m telling you about it is what type of identifier
it is; and the type of identifier is the one described as item 06 in ONIX Codelist 5.” While
a reading system is not, of course, required to go and consult ONIX Codelist 5, there is
a clear, unambiguous record in the EPUB metadata of exactly what kind of identifier
this one is. ONIX Codelist 5 provides a convenient, authoritative reference to types of
identifiers; but if this were a publisher’s own proprietary identifier (a common type of
identifier a publisher might want to include), then it could simply say scheme="propri
etary".

As mentioned previously, an EPUB 3 can have any number of dc:identifier elements
in its metadata. And one of them must be designated, via the unique-identifier
attribute on the root package element, as the unique identifier of the publication. Isn’t
this the same as saying it’s the unique identifier of the EPUB, just as EPUB 2 specified?

12 | Chapter 1: Package Document and Metadata

It turns out that the meaning of unique is not “unique.” When technologists—or reading
systems—say an identifier uniquely identifies an EPUB, they mean it quite literally: if
one EPUB is not bit-for-bit identical to another EPUB, it needs a different unique iden‐
tifier, because it’s not the same thing; systems need to tell them apart. Publishers, on the
other hand, want the identifier to be persistent. To them, a new EPUB that corrects some
typographical errors or adds some metadata is still “the same EPUB”; giving it a different
identifier creates ambiguity and potentially makes it difficult for a user to realize that
the corrected EPUB and the uncorrected EPUB are really “the same book.”

After quite a bit of struggle, the EPUB 3 Working Group came up with an elegant solution
to this dilemma by doing two simple things: changing the definition of unique identifi‐
er and adding the timestamp mentioned earlier.

The specifications for EPUB 3 say that the unique identifier—the value of the unique-
identifier attribute on the package—should be persistent in terms of the publica‐
tion. It’s a publication identifier. It should not change when the only differences between
the old and new versions of the EPUB are minor changes like additions to metadata or
fixing errata. (New editions, on the other hand, or derivative versions of various sorts,
like a translation or even an illustrated version of a previously nonillustrated text, ob‐
viously must get a new “unique identifier.”)

But the EPUB 3 specs also require the package to contain a meta element that records
the date and time, via the timestamp, when that EPUB file was created. It is the com‐
bination of these two things, the publication identifier and the timestamp, that serves
as the package identifier that tells the reading system exactly which EPUB file it is dealing
with.

So although the exact meaning of “unique” is still fuzzy—two EPUBs with the same
“unique identifier” don’t have to be identical, and of course there can be many copies of
an EPUB file with a given timestamp—we have neatly addressed the needs of the pub‐
lishers and the technologists, and in a way that is easy for anybody to do.

Here’s an example of how the metadata looks in an EPUB:

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:identifier id="pub-id">
 urn:uuid:A1B0D67E-2E81-4DF5-9E67-A64CBE366809
 </dc:identifier>
 <meta property="dcterms:modified">2011-01-01T12:00:00Z</meta>
 ...
</metadata>

This results in the Package ID that only a computer could love:

urn:uuid:A1B0D67E-2E81-4DF5-9E67-A64CBE366809@2011-01-01T12:00:00Z

Identifiers | 13

Although there is an id provided for the dc:identifier element, it isn’t
referenced by the meta element with the dcterms:modified attribute.
That’s because this meta does not “refine” the dc:identifier; rather, it
applies to the package and is thus a primary expression.

Types of Titles
It might also be assumed that one title for an EPUB should be sufficient, and usually,
this is in fact the case. However, the EPUB 3 Working Group realized that there are
actually quite a few different types of titles that publishers might want to provide in an
EPUB’s metadata, and that some titles are actually quite complex, with different com‐
ponents serving different purposes. Moreover, different types of publications use dif‐
ferent types of titles. ONIX, for example, provides an extensive list of title types used in
books; PRISM, the standard for magazine metadata, uses a different scheme.

In keeping with its desire to be both comprehensive, accommodating whatever vocab‐
ularies a given publisher might need, as well as being simple to implement and practical
as a requirement for reading systems, the EPUB 3.0 specification provides a simple set
of six built-in types that reading systems are required to recognize as values of the title-
type property, but also permits other values with the use of the scheme attribute in order
to specify where they are documented (e.g., the ONIX Code List 15).

The six basic values of the title-type property specified by EPUB 3 are:
main

The title that reading systems should normally display, for example in a user’s library
or bookshelf. If no values for the title-type property are provided, it is assumed
that the first or only dc:title should be considered the “main title.”

subtitle
A secondary title that augments the main title but is separate from it.

short
A shortened version of the main title, often used when referring to a book with a
long title (for example, “Huck Finn” for The Adventures of Huckleberry Finn) or a
brief expression by which a book is known (for example, “Strunk and White” for
The Elements of Style or “Fowler” for A Dictionary of Modern English Usage).

collection
A title given to a set (either finite or ongoing) to which the given publication is a
member. This can be a “series title,” when the publications are in a specific sequence
(e.g., The Lord of the Rings), or one in which the members are not necessarily in a
particular order (e.g., “Columbia Studies in South Asian Art”).

14 | Chapter 1: Package Document and Metadata

edition
A designation that indicates substantive changes from one to the next.

extended
A fully expressed title that may be a combination of some of the other title types,
for example: The Great Cookbooks of the World: Mon premier guide de caisson, un
Mémoire. The New French Cuisine Masters, Volume Two. Special Anniversary Edi‐
tion.

The use of these title types provides a good example of how the id attribute and the all-
powerful meta element with its refines and property attributes are used in EPUB
metadata. This is one of many examples provided in the formal EPUB Publications 3.0
specification:

<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
 ...
 <dc:title id="t1">A Dictionary of Modern English Usage</dc:title>
 <meta refines="#t1" property="title-type">main</meta>
 <dc:title id="t2">First Edition</dc:title>
 <meta refines="#t2" property="title-type">edition</meta>
 <dc:title id="t3">Fowler’s</dc:title>
 <meta refines="#t3" property="title-type">short</meta>
 ...
</metadata>

Note that the other default vocabulary values for property on meta, besides title-
type, can also be used. Two that publishers may find particularly useful in the context
of titles are:
display-seq

Indicates the sequence in which the given dc:title should be displayed in relation
to the other dc:titles

file-as

Provides a version of a title that will alphabetize properly, for example “Canterbury
Tales, The.”

The Manifest and Spine
The next elements in the EPUB package following metadata are the manifest and
spine; both of them are required. They constitute the “packing list” and a key aspect of
the “assembly instructions” that make an EPUB so much more than just a “website in a
box.” The manifest documents all of the individual resources that together constitute
the EPUB, and the spine provides a default reading order by which those resources may
be presented to a user.

The Manifest and Spine | 15

The manifest and Fallbacks
Each and every resource that is part of the EPUB—every content document, every im‐
age, every video and audio file, every font, every style sheet: every individual resource
—is documented by an item element in the manifest. The purpose is to alert a reading
system, up front, about everything it must find in the publication, what kind of media
each thing is, and where it can find it. They can be in any order, but they all have to be
in the manifest.

Each item contains these three required attributes:
id

This is essential, so that each constituent part of the EPUB can be uniquely identi‐
fied. It is what enables that versatile meta element to provide metadata associated
with specific items, via its refines attribute.

href

An internationalized resource identifier (IRI) specifying the location of the re‐
source. Resource names should be restricted to the ASCII character set.

media-type

The MIME media type that specifies the type and format of the resource.

Here’s a typical entry for an XHTML content document:

<item id="chapter01"
 href="xhtml/c01.xhtml"
 media-type="application/xhtml+xml"/>

The EPUB 3 specification designates 14 Core Media Types that all EPUB 3 reading
systems are required to recognize. For example, XHTML and SVG are the Core Media
Types for content documents; GIF, JPEG, PNG, and SVG are the Core Media Types for
images.

Core Media Types are discussed in detail in the other chapters in this
book to which they apply.

If a resource in an EPUB is of any other media type (which are referred to as Foreign
Resources), a fallback must be provided that is a Core Media Type. This is done via the
fallback attribute on the item. Note that an EPUB can have a fallback chain in which
one non-Core Media Type item falls back to another, which eventually resolves to an
item that is a Core Media Type. We’ll look at fallbacks in more detail in “Fallback Con‐
tent” (page 102) in Chapter 3.

16 | Chapter 1: Package Document and Metadata

An item may also have a properties attribute with one or more space-separated prop‐
erty values that alert the reading system to some useful information about the item. The
values for manifest property values in EPUB 3 are:
cover-image

Clearly documenting which item should be displayed as the cover.

mathml, scripted, svg, remote-resources, and switch
Alerting the reading system to where it will have to deal with MathML, JavaScript,
SVG, remote resources, or non-EPUB XML fragments (see the other chapters for
more detail on these).

nav

The XHTML5 document that is the required Navigation Document (see Chap‐
ter 2).

And finally, an item may have a media-overlay attribute, the value of which is an IDREF
of the Media Overlay Document for the item. Media Overlays are the EPUB 3 mecha‐
nism for synchronizing text and recorded audio; they are discussed in detail in Chap‐
ter 6.

The spine
Whereas the manifest documents each and every item in the EPUB, in no particular
order, the spine provides a default reading order, and it is required to list only those
components that are not referenced by other components (primary content). The point
is to provide at least one path by which everything in the EPUB will be presented to the
reader, in at least one logical order. So, for example, the spine will list the content docu‐
ment for chapter 5 in a book (presumably between those for chapters 4 and 6), but it
will not necessarily list images or media or scripts that are contained in chapter 5
(auxiliary content), because they will be presented in the context of chapter 5 being
presented, and may not necessarily be presented in linear order (e.g., perhaps as a pop
up):

<spine>
 ...
 <itemref idref="chapter04"/>
 <itemref idref="chapter05"/>
 <itemref idref="chapter06"/>
 ...
</spine>

Note that the spine is also not the same as the Navigation Document. That document
can provide much richer information about the internal structure of content documents

The Manifest and Spine | 17

(see Chapter 2). The spine ensures that a reading system can recognize the first primary
content document in the EPUB and then render the successive primary content docu‐
ments. It does not, however, mandate that a user must access the content in this order;
it just provides a default reading order that the user is free to depart from.

Instead of the item element used in the manifest, each element in the spine is an
itemref element. Each of these elements contains an idref attribute identifying the
appropriate item in the manifest, as well as an optional linear attribute that specifies
whether the item is primary (yes, the default) or auxiliary (no), and an optional prop
erties attribute that can specify whether the given content document starts on the left
or right side of a spread:

<spine>
 <itemref idref="cover" linear="no"/>
 <itemref idref="chapter01"/>
 ...
</spine>

The spine may also contain a toc attribute that identifies an NCX file. The NCX is how
EPUB 2 specified navigation; it is superseded in EPUB 3 by the Navigation Document
(nav, an XHTML document, as described in Chapter 2). In order to enable an EPUB 3
to be rendered by an EPUB 2 reading system, it has to include an NCX even though it
also has to have a nav to conform to EPUB 3. Until EPUB 2 reading systems have become
obsolete (no sign of that in the near future), publishers generally need to include both.
The collision is prevented by the fact that the nav is pointed to by the manifest’s nav
property and the NCX is pointed to by the spine’s toc attribute:

<package ...>
 ...
 <manifest>
 ...
 <item id="nav"
 href="nav.xhtml"
 media-type="application/xhtml+xml"
 properties="nav"/>
 <item href="toc.ncx"
 id="ncx"
 media-type="application/x-dtbncx+xml"/>
 ...
 </manifest>
 <spine toc="ncx">
 ...
 </spine>
</package>

18 | Chapter 1: Package Document and Metadata

Document Metadata
While the metadata for most EPUBs is typically associated with the publication as a
whole, EPUB 3 also enables metadata to be associated with content documents and even
with elements within content documents. This is particularly useful for publications
that are article-based, like magazines and journals, as well as for contributed volumes,
books in which each chapter is by a different author. In these cases, much metadata is
at the article or chapter level. But you don’t need to stop there; you can even associate
metadata with elements within the XHTML content documents, down to the phrase
level with the span element.

It will be no surprise, if you’ve been paying attention, that this is done with our all-
purpose meta element. And it depends on each document or element that you want to
reference having an id attribute that is unique within the EPUB. (Because EPUBs are
designed to be self-contained, the IDs are not required to be unique between EPUBs,
although for publishers of potentially related EPUBs it is a good practice to do that, to
better enable linking and referencing between EPUBs, though most reading systems
don’t yet enable that.)

Again, the mechanism is a simple and generic one: each meta element has a refines
attribute, the value of which is the ID of what it’s referencing, and a property attribute
that provides either a property value from the default vocabulary (see “The All-Powerful
meta Element” (page 5) earlier in this chapter) or a value that uses a prefix and term
from one of the reserved vocabularies or from one for which you’ve declared the prefix.

These meta elements are in the metadata within the package; they are
not in the content documents themselves. They reference the content
documents (or elements within them) via the relative URI, which means
they begin with a # symbol.

Here’s an example of some metadata for a hypothetical article from Sports Illustrated
contained in an EPUB along with other articles, ads, and other resources:

<meta refines="#ID12345" property="prism:contentType">article</meta>
<meta property="dc:title" id="t4main">
 Meet The Rejuvenated, Revitalized LeBron
</meta>
<meta refines="#t4main" property="title-type">main</meta>
<meta property="dc:title" id="t4sub">
 After a tumultuous first year in Miami, LeBron James locked himself
 in his house, rued disappointing his teammates—then worked hard to
 hone his game. The result: one of the best seasons in NBA history
</meta>
<meta refines="#t4sub" property="title-type">subtitle</meta>

Document Metadata | 19

<meta refines="#ID12345" property="dc:creator">LEE JENKINS</meta>
<meta refines="#ID12345" property="prism:genre">coverStory</meta>
<meta refines="#ID12345" property="prism:genre">profile</meta>
<meta refines="#ID12345" property="TimeInc:enhancer">Digitization Co.</meta>
<meta refines="#ID12345" property="TimeInc:checker">Michael Smith</meta>

This metadata all applies to the article that has an ID in the form id="ID12345" (note
that as a type ID, XML rules require this ID to begin with an alpha character). Because
the refines attribute for meta is a relative URI, it begins with a # and then the ID of the
article.

This example shows that Time, Inc., chose to provide the contentType (article) and
genre categorizations (coverStory and profile) from the PRISM vocabulary. And
they’ve recorded the firm that created the EPUB and the person who checked it using
their own proprietary vocabulary. The PRISM and TimeInc prefixes would be declared
using the prefix attribute on the root-level package element.

This example also shows the use of the EPUB 3 title-type properties for the main title
and the subtitle.

Think of how cumbersome it would be if the title and subtitle were
combined into one long title!

Links and Bindings
While its main purpose is to provide a specification for consistent, predictable content
in EPUBs, the EPUB 3 spec recognizes that it is sometimes necessary to provide things
that are not covered by that specification. One way this is done is via the epub:switch
element, which applies to XML fragments in content documents; it is discussed in detail
in Chapter 3. But two other mechanisms are part of the package metadata: the link and
bindings elements.

The OPF meta elements are only intended to be used for identity and version informa‐
tion, and metadata that reading systems might want to expose to users or use to organize
and manage the bookshelf. Publishers have much richer “real” bibliographical records,
which can be incorporated into an EPUB using a link. Using the link element, a child
of metadata within package, is not the same as simply linking to an external location
with a link in a content document. The things linked to on the Web from the content
documents are not considered part of the publication; and these links do not work if
the EPUB is offline. In contrast, the link element in an EPUB’s metadata provides access

20 | Chapter 1: Package Document and Metadata

to a resource that is considered more integral to the publication, although it is not for‐
mally part of the EPUB itself. The resource may be provided in the container, so it is
available when the EPUB is offline, but a reading system is not required to process or
use the resource.

The link element requires an href attribute to provide either an absolute or relative IRI
to a resource, and a rel attribute to provide the property value—i.e., what kind of re‐
source is being linked to. The values defined for the rel attribute in EPUB 3.0 are:
marc21xml-record

For a MARC21 record providing bibliographic metadata for the publication

mods-record

For a MODS record of the publication conforming to the Library of Congress’s
Metadata Object Description Schema

onix-record

For an ONIX record providing book supply chain metadata for the publication
conforming to EDItEUR’s ONIX for Books specification

xml-signature

For an XML Signature applying to the publication or an associated property con‐
forming to the W3C’s XML Signature specification

xmp-record

For an XMP record conforming to the ISO Extensible Metadata Platform that ap‐
plies to the publication (not just a component, like an image, for which the prefix
mechanism and meta element should be used to provide metadata using the xmp:
prefix)

Here is how you might reference an external ONIX record:

<link rel="onix-record" href="http://example.org/meta/records/onix/121099"/>

The bindings element is a child of the root package element. Its chief purpose is to
enable an EPUB to contain fallbacks that are more sophisticated than those provided
by the HTML5 object element’s fallback mechanisms. The bindings element docu‐
ments the presence of handlers for such foreign media via its media-type attribute.
When a reading system encounters such an unsupported media type, it looks in the
bindings element to see if a handler is provided for it, and if so, it is supposed to use
that handler instead of the usual fallback. Bindings are discussed in more detail in
“Bindings” (page 112) in Chapter 3.

Links and Bindings | 21

Metadata for Fixed Layout Publications
After the original EPUB 3.0 specification was published in September 2011, it was rec‐
ognized that despite the importance of EPUB as a reflowable format, many publishers
need to use it in a “fixed layout” form in which pagination is fixed, typically via fixed-
layout XHTML, SVG, or bitmap images. While there is nothing in that EPUB 3.0 spec‐
ification to prevent this, it became clear that some metadata should be added to aid in
the publication of fixed layout EPUBs. So in March 2012, the IDPF published an infor‐
mational document to do that.

This provides a number of useful properties. These require the rendition prefix to be
declared as prefix="rendition: http://www.idpf.org/vocab/rendition#" on the
package element. With one exception as noted below, these properties may be used on
the meta element to apply to the publication as a whole or on an itemref element in the
spine. The available properties are:
rendition:layout

With the values reflowable or pre-paginated.

rendition:orientation

With the values landscape, portrait, or auto.

rendition:spread

Specifies how reading systems should render spreads, with the values none, land
scape, portrait, both, or auto.

rendition:page-spread-center

Complements the already existing page-spread-left and page-spread-right
properties to force a specific placement on a spread. It is used only on the item
ref element in the spine.

We’ll return to look at how to use these properties to create fixed layouts in more detail
in “Fixed Layouts” (page 80) in Chapter 3.

The Container
Now for the easiest part of all: zipping everything up to make it an .epub. The specifi‐
cation for this is the Open Container Format (OCF) 3.0, and it is literally a .zip file,
though it uses the .epub extension. It contains all the content documents and other
resources, including all the metadata that has been described in this chapter.

All of this is contained in a directory called META-INF. This META-INF directory
contains the following files:

22 | Chapter 1: Package Document and Metadata

http://www.idpf.org/vocab/rendition

A required container.xml file
Contains a rootfiles element with one or more rootfile elements, each of which
references a publication’s package document, the .opf file. Reading systems must use
the manifest in this package (see “The manifest and Fallbacks” (page 16)) to process
the EPUB.

There is an optional manifest.xml file that may provide a manifest for
the container; this is not used in rendering the EPUB that the container
contains.

An optional encryption.xml file
Holds all the encryption information (if any). Its root element is encryption, which
contains child elements EncryptedKey and EncryptedData that describe how the
files are encrypted and provide the key to access them. OCF uses the XML En‐
cryption Syntax and Processing Version 1.1 specification. Note, however, that the
META-INF files themselves as listed here, along with the package document that
is the root file of the EPUB, must not be encrypted.

An optional manifest.xml file
Simply provides a manifest for the container (not to be confused with the mani
fest in the EPUB package).

An optional metadata.xml file
May provide metadata for the container (not to be confused with the metadata in
the EPUB package).

An optional rights.xml file
Contains rights or DRM (Digital Rights Management) information about the
EPUB. No DRM scheme is specified; EPUB is deliberately agnostic as to the issue
of DRM.

An optional signatures.xml file
Can hold digital signatures of the container and its contents. Its root element is
signatures, which contains child Signature elements that conform to the XML
Signature Syntax and Processing Version 1.1 specification.

The EPUB Open Container Format 3.0 specification provides detailed instructions re‐
garding the creation of the OCF. But for most publishers, this is the simplest part of the
process, and is usually quite automated. The result is a single-file EPUB with the ex‐
tension .epub that contains a publication with all the rich content and functionality that
EPUB 3 provides—and for which the .opf document that is the subject of this chapter
provides such an invaluable guide.

The Container | 23

One requirement that often trips people up when manually creating an
EPUB is that the mimetype file has to be the first file added to the ZIP
container. The default zipping of an EPUB directory typically results in
the META-INF directory being packaged first, leading to validation er‐
rors. See “Validating unpacked EPUBs” (page 309) in Chapter 11 for in‐
formation on how to use epubcheck to automate the packaging process
and avoid this problem. Free Mac scripts to zip and unzip archives are
also available at http://code.google.com/p/epub-applescripts/.

24 | Chapter 1: Package Document and Metadata

http://code.google.com/p/epub-applescripts/

